Using different hydrological variables to assess the impacts of atmospheric forcing errors on optimization and uncertainty analysis of the CHASM surface model at a cold catchment

نویسندگان

  • Youlong Xia
  • Zong-Liang Yang
  • Paul L. Stoffa
  • Mrinal K. Sen
چکیده

[1] Estimation of parameters for land-surface models, along with their corresponding uncertainties, relies on the input data for the atmospheric forcing variables including atmospheric pressure, temperature, humidity, wind speed, precipitation, and incoming shortwave and longwave radiation. Most studies assume that forcing data are accurate and contain no random or systematic observational errors. In practice, there are indeed systematic errors in precipitation measurements, especially for snowfall, due to windcaused undercatch. Incoming shortwave and longwave radiation fluxes are often not directly measured, but estimated from empirical formulations. Uncertainties in these forcing data may substantially affect optimization and uncertainty estimates of land surface models. In this study, we used 18-year forcing and calibration data as well as information about the uncertainties in the forcing variables at Valdai, Russia, to study the impacts of forcing errors on selection of optimal model parameters and their uncertainty estimates when three different hydrological variables were used for calibration. The results show that forcing errors have few effects on the selection of optimal model parameter sets when monthly evapotranspiration and runoff are calibrated. However, forcing errors do introduce significant effects on the selection of optimal model parameters when daily snow water equivalent is calibrated. Forcing errors also significantly affect uncertainty estimates of the land surface model parameters. In addition, constraints of forcing errors are different when different hydrological variables are calibrated. All three hydrological variables constrain the incoming longwave radiation error well, and the snow water equivalent and runoff constrain winter snowfall errors well. However, all three hydrological variables cannot constrain the incoming solar radiation error well. We highlight in this study that runoff is shown to be a good observable to use for calibration, the reason being that it integrates multiple hydrological processes; and the results support the theory that typical rain/snow gauges have 10–20% undercatch.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Climate Change Impacts on Hydrological Characteristics of Watershed (Case study: Aji- Chai Watershed)

 Studying climate change impact on hydrological variables such as runoff has attracted more attention over recent years mainly due to the imposed imbalance in climate system by greenhouse gas emission. Hence, initially in this research, the trend and abrupt changes of hydro – climatic variables were studied using data mining approaches in 18 stations over 40 years (1972-2011) in Aji-Chai waters...

متن کامل

Roughness uncertainty analysis in river flooding using HEC-RAS model

Although flood maps based on the deterministic approach play an important role in minimizing flood losses, there is considerable uncertainty in calculating the level of water inundation. Roughness is a key parameter in water surface elevation. Since roughness is not easily measurable and is estimated based on experimental and laboratory methods, it introduces a significant degree of uncertainty...

متن کامل

Using SWAT and SWAT-CUP for hydrological simulation and uncertainty analysis in arid and semi-arid watersheds (Case study: Zoshk Watershed, Shandiz, Iran)

The aims of this project was to assess the capability of SWAT model and SWAT-CUP software in hydrological simulation and to evaluate the uncertainty of SWAT model in estimating runoff in arid and semi-arid watersheds. Model calibration and uncertainty analysis were performed using the Sequential Uncertainty Fitting (SUFI2) algorithm. In the stage of calibration and validation of water flow, per...

متن کامل

Modeling spatial distribution of Tehran air pollutants using geostatistical methods incorporate uncertainty maps

The estimation of pollution fields, especially in densely populated areas, is an important application in the field of environmental science due to the significant effects of air pollution on public health. In this paper, we investigate the spatial distribution of three air pollutants in Tehran’s atmosphere: carbon monoxide (CO), nitrogen dioxide (NO2), and atmospheric particulate matters less ...

متن کامل

Modeling spatial distribution of Tehran air pollutants using geostatistical methods incorporate uncertainty maps

The estimation of pollution fields, especially in densely populated areas, is an important application in the field of environmental science due to the significant effects of air pollution on public health. In this paper, we investigate the spatial distribution of three air pollutants in Tehran’s atmosphere: carbon monoxide (CO), nitrogen dioxide (NO2), and atmospheric particulate matters less ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004